БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ХРАМОВАЯ МУЗЫКА, культовая музыка.
ЦИНКА СУЛЬФИД, сернистый цинк, ZnS, белый порошок.
ЧЕРСКОГО ХРЕБЕТ, цепи Черского, горная система на С.-В. СССР.
ЧУВАШСКИЙ УНИВЕРСИТЕТ имени И. H. Ульянова.
ТАМОЖНЯ (от тамга), гос. учреждение, контролирующее провоз грузов.
ШТЕТТИНСКИЙ МИР 1570, между Швецией и Данией.
ЭКСПОНОМЕТРИЯ, раздел фотографии, в к-ром определяют условия экспонирования.
ЭССЕ (франц. essai - попытка, проба, очерк, от лат. exagium - взвешивание), прозаич. сочинение.
ТЕАТР ТЕНЕЙ, вид театр, зрелища.
ЕККЕ, текийе, завие (тур. tekke, zaviye), обитель мусульм. дервишей в Турции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2197031823552198549321лении или глубоком вакууме, сверхсильных магнитных полях и т. д.

Высокий и сверхвысокий вакуум создаётся в электронных приборах и ускорителях для того, чтобы избежать столкновений ускоряемых частиц с молекулами газа. Исследование свойств поверхностей и тонких слоев вещества в сверхвысоком вакууме открыло новый раздел Ф. твёрдого тела. Эти исследования очень важны, в частности, в связи с освоением космич. пространства.

V. Некоторые нерешённые проблемы физики

Физика элементарных частиц. Наиболее фундаментальной проблемой Ф. было и остаётся исследование материи на самом глубоком уровне - уровне элементарных частиц. Накоплен огромный экспериментальный материал по взаимодействиям и превращениям элементарных частиц, произвести же теоретич. обобщение этого материала с единой точки зрения пока не удаётся. Либо недостаёт необходимых фактов, либо - идеи, способной пролить свет на проблему строения и взаимодействия элементарных частиц. Остаётся нерешённой задача о теоретич. определении спектра масс элементарных частиц. Возможно, для решения этой проблемы и устранения бесконечностей в квантовой теории поля необходимо введение нек-рой фундаментальной длины (l), к-рая ограничивала бы применимость обычных представлений о пространстве-времени как о непрерывной сущности. До расстояний порядка 10-15 см и соответственно времён t ~ l/с~10-25 сек обычные пространственно-временные соотношения, по-видимому, справедливы, но на меньших расстояниях, возможно, они нарушаются. Делаются попытки введения фундаментальной длины в единой теории поля (Гей-зенберг и др.) и в различных вариантах квантования пространства-времени.

Однако пока эти попытки не привели к ощутимым результатам.

Не решена задача построения квантовой теории тяготения. Только намечается возможность сведения воедино четырёх фундаментальных взаимодействий.

Астрофизика. Развитие Ф. элементарных частиц и атомного ядра позволило приблизиться к пониманию таких сложных проблем, как эволюция Вселенной на ранних стадиях развития, эволюция звёзд и образование хим. элементов. Однако, несмотря на огромные достижения, перед совр. астрофизикой стоят и нерешённые проблемы. Остаётся неясным, каково состояние материи при огромных плотностях и давлениях внутри звёзд и "чёрных дыр". Не выяснена физ. природа квазаров и радиогалактик, причины вспышек сверхновых звёзд и появления всплес-кол у-излучения. Непонятно, почему попытки обнаружения солнечных нейтрино, к-рые должны рождаться в недрах Солнца при термоядерных реакциях, к успеху не привели (см. Нейтринная астрономия). Не выявлен полностью механизм ускорения заряженных частиц (космич. лучей) при вспышках сверхновых звёзд и механизм излучения электромагнитных волн пульсарами и т. д. Наконец, положено лишь начало решению проблемы эволюции Вселенной в целом. Что было на ранних стадиях эволюции Вселенной и какова её судьба в дальнейшем? Сменится ли когда-нибудь наблюдаемое расширение Вселенной её сжатием? На все эти вопросы пока ответов нет.

Несомненно, что наиболее фундаментальные проблемы Совр. Ф. связаны с элементарными частицами и проблемой строения и развития Вселенной. Здесь предстоит открыть новые законы поведения материи в необычных условиях - при сверхмалых пространственно-временных расстояниях в микромире и сверхбольших плотностях в начале расширения Вселенной. Все др. проблемы имеют более частный характер и связаны с поиска ми путей эффективного использования осн. законов для объяснения наблюдаемых явлений и предсказания новых.

Физика ядра. После создания протонно-нейтронной модели ядра был достигнут большой прогресс в понимании структуры атомных ядер, построены различные приближённые ядерные модели. Однако по-следоват. теории атомного ядра (подобной теории атомных оболочек), позволяющей рассчитать, в частности, энергию связи нуклонов в ядре и уровни энергии ядра, пока нет. Успех в этом направлении может быть достигнут лишь после построения теории сильных взаимодействий.

Экспериментальное исследование взаимодействия нуклонов в ядре - ядерных сил - сопряжено с очень большими трудностями из-за предельно сложного характера этих сил. Они зависят от расстояния между нуклонами, от скоростей нуклонов и ориентации их спинов.

Значит. интерес представляет возможность экспериментального обнаружения долгоживущих элементов с атомными номерами ок. 114 и 126 (т. н. островов стабильности), к-рые предсказываются теорией.

Одна из важнейших задач, к-рую предстоит решить Ф.,- проблема управляемого термоядерного синтеза. В большом масштабе ведутся экспериментальные и теоретич. работы по созданию горячей дейтерий-тритиевой плазмы, необходимой для термоядерной реакции. Сов. установки типа "токамак" являются, по-видимому, самыми перспективными в этом отношении. Имеются и др. возможности. В частности, для нагрева крупинок из смеси дейтерия с тритием можно использовать лазерное излучение, электронные или ионные пучки, получаемые в мощных импульсных ускорителях.

Квантовая электроника. Квантовые генераторы дают электромагнитное излучение, уникальное по своим свойствам. Излучение лазера когерентно и может достигать в узком спектральном интервале огромной мощности: 1012 -1013 вт, причём расходимость светового пучка составляет всего ок. 10-4 рад. Напряжённость электрич. поля излучения лазера может превышать напряжённость внутриатомного поля.

Создание лазеров вызвало появление и быстрое развитие нового раздела оптики - нелинейной оптики. В сильном лазерном излучении становятся существенными нелинейные эффекты взаимодействия электромагнитной волны со средой. Эти эффекты - перестройка частоты излучения, самофокусировка пучка и др. представляют большой теоретич. и практич. интерес.

Почти строгая монохроматичность лазерного излучения позволила получить объёмное изображение объектов (голография) с помощью интерференции волн.

Лазерное излучение применяют для разделения изотопов, в частности для обогащения урана изотопом 235U, для испарения и сварки металлов в вакууме, в медицине и т. д. Перспективно, по-видимому, применение лазеров для нагрева вещества до темп-р, при к-рых возможно осуществление термоядерных реакций. Стоит задача поисков новых применений лазерного излучения, напр. для связи в космосе.

Гл. проблемы, к-рые предстоит решить,- это дальнейшее повышение мощности и расширение диапазона длин волн лазерного пучка с плавной перестройкой по частоте. Ведутся поисковые работы по созданию рентгеновских и гамма-лазеров.

Физика твёрдого тела. Ф. твёрдого тела принадлежит ведущая роль в исследовании возможностей получения материалов с экстремальными свойствами в отношении механич. прочности, теплостойкости, электрич., магнитных и оптич. характеристик.

С 70-х гг. 20 в. ведутся активные поиски нефононных механизмов сверхпроводимости. Решение этой задачи, возможно, позволило бы создать высокотемпературные сверхпроводники. Это имело бы огромное значение для экспериментальной Ф. и техники, в т. ч. решило бы проблему передачи электрич. энергии на большие расстояния практически без потерь.

Весьма интересная проблема - исследование физ. свойств твёрдого и жидкого гелия-3 при сверхнизких (ниже 3*10-3 К) темп-pax. Твёрдый гелий-3 должен быть, по-видимому, единств. обменным ядерным антиферромагнетиком. Жидкий гелий-3 - простейшая ферми-жидкость, теория к-рой составляет существенный предмет квантовой статистики.

Большой науч. и практич. интерес представляет получение металлич. водорода и изучение его физ. свойств. Он должен быть уникальным физ. объектом, т. к. его решётка состоит из протонов. Полагают, что металлич. водород будет обладать рядом необычных свойств, изучение к-рых может привести к принципиально новым открытиям в Ф. В Ин-те физики высоких давлений АН СССР сделаны первые шаги в этом направлении - обнаружен переход в металлич. состояние тонких плёнок твёрдого водорода при темп-ре 4,2 К и давлении ок. 1 Мбар.

Разрабатываются новые направления исследования твёрдых тел акустич. методами: акустоэлектроника (взаимодействие акустич. волн с электронами в полупроводниках, металлах и сверхпроводниках), акустич. ядерный и парамагнитный резонансы, определение фононного спектра и дисперсионных кривых.

Следует отметить, что развитие тра-диц. направлений Ф. твёрдого тела часто приводит к неожиданным открытиям новых физ. явлений или материалов с существенно новыми свойствами, как, напр., Джозефсона эффект, полупроводники с гетеропереходами, сверхпроводники 2-го рода, квантовые кристаллы, нитевидные кристаллы и др.

Несмотря на достигнутые успехи, необходимо разрабатывать принципиально новые физ. методы получения более надёжных и миниатюрных полупроводниковых устройств (см. Микроэлектроника, Функциональная электроника), методы получения более высоких давлений, сверхнизких темп-р и т. п.

Большое значение имеет изучение Ф. полимеров с их необычными механич. и термодинамич. свойствами, в частности биополимеров, к к-рым относятся все белки.

Физика плазмы. Важность изучения плазмы связана с двумя обстоятельствами. Во-первых, в плазменном состоянии находится подавляющая часть вещества Вселенной: звёзды и их атмосферы, межзвёздная среда, радиац. пояса и ионосфера Земли и др. Во-вторых, именно в высокотемпературной плазме имеется реальная возможность осуществ ления управляемого термоядерного синтеза.

Осн. уравнения, описывающие плазму, хорошо известны. Однако процессы в плазме столь сложны, что предсказать её поведение в различных условиях весьма трудно. Гл. проблема, стоящая перед Ф. плазмы,- разработка эффективных методов разогрева плазмы до темп-ры порядка 1 млрд. градусов и удержание её в этом состоянии (несмотря на разного рода неустойчивости, присущие высокотемпературной плазме) в течение времени, достаточного для протекания термоядерной реакции в большей части рабочего объёма. Решение проблемы устойчивости плазмы играет важную. роль также в обеспечении работы ускорителей на встречных пучках и в разработке т. н. коллективных методов ускорения частиц.

Исследование электромагнитного и корпускулярного излучения плазмы имеет решающее значение для объяснения ускорения заряженных частиц при вспышках сверхновых, излучения пульсаров и др.

Разумеется, проблемы совр. Ф. не сводятся к перечисленным; свои проблемы имеются во всех разделах Ф., и общее число их столь велико, что они не могут быть здесь приведены.

VI. Связь физики с другими науками и техникой

Физика и философия. Вследствие общности и широты своих законов Ф. всегда оказывала воздействие на развитие философии и сама находилась под её влиянием. С каждым новым открытием в естественнонауч. области, по словам Ф. Энгельса, материализм неизбежно должен менять свою форму.

В достижениях совр. Ф. всё большее подтверждение и конкретизацию находит высшая форма материализма - диалектический материализм. При переходе к исследованию микромира закон диалектики - единство противоположностей - проявляется особенно отчётливо. Единство прерывного и непрерывного находит своё отражение в кор-пускулярно-волновом дуализме микрочастиц. Необходимое и случайное выступают в неразрывной связи, что выражается в вероятностном, статистич. характере законов движения микрочастиц. Провозглашаемое материализмом единство материального мира ярко проявляется во взаимных превращениях элементарных частиц - возможных форм существования физ. материи. Особенно важен правильный филос. анализ в рево-люц. эпохи развития Ф., когда старые представления подвергаются коренному пересмотру. Классич. образец такого анализа был дан В. И. Лениным в кн. "Материализм и эмпириокритицизм". Лишь понимание соотношения между абсолютной и относительной истинами позволяет правильно оценить сущность революц. преобразований в Ф., видеть в них обогащение и углубление наших представлений о материи, дальнейшее развитие материализма.

Физика и математика. Ф.-количеств. наука. Основные её законы формулируются на математич. языке, гл. обр. с помощью дифференц. уравнений. С др. стороны, новые идеи и методы в математике часто возникали под влиянием Ф. Анализ бесконечно малых был создан Ньютоном (одновременно с Г. В. Лейб-

ницем) при формулировке осн. законов механики. Создание теории электромагнитного поля привело к развитию векторного анализа. Развитие таких разделов математики, как тензорное исчисление, римановская геометрия, теория групп и др., стимулировалось новыми физ. теориями: общей теорией относительности и квантовой механикой. Развитие квантовой теории поля ставит новые проблемы функционального анализа и т. д.

Физика и другие естественные науки. Тесная связь Ф. с др. отраслями естествознания привела, по словам С. И. Вавилова, к тому, что Ф. глубочайшими корнями вросла в астрономию, геологию, химию, биологию и др. естеств. науки. Образовался ряд пограничных дисциплин: астрофизика, геофизика, биофизика, физическая химия и др. Физ. методы исследования получили решающее значение для всех естеств. наук. Электронный микроскоп на неск. порядков повысил возможности различения деталей объектов, позволив наблюдать отд. молекулы. С помощью рентгеноструктурного анализа изучаются не только кристаллы, но и сложнейшие биологич. структуры. Подлинным его триумфом явилось установление структуры молекул ДНК, входящих в состав хромосом клеточных ядер всех живых организмов и являющихся носителями наследств. кода. Революция в биологии, связанная с возникновением молекулярной биологии и генетики, была бы невозможна без Ф.

Метод т. н. меченых атомов играет огромную роль в исследовании обмена веществ в живых организмах; мн. проблемы биологии, физиологии и медицины были решены с их помощью. Ультразвук применяется в медицине для диагностики и терапии.

Как говорилось выше, законы квантовой механики лежат в основе теории хим. связи. С помощью меченых атомов можно проследить кинетику хим. реакций. Физ. методами, напр. с помощью пучков мюо-нов, полученных на ускорителях, удаётся осуществить хим. реакции, не идущие в обычных условиях. Используются структурные аналоги атома водорода-позитроний и мюоний, существование и свойства к-рых были установлены физиками. В частности, с помощью мюония удаётся измерять скорость протекания быстрых хим. реакций. (См. Мюоны.)

Развитие электроники позволяет наблюдать процессы, протекающие за время, меньшее 10-12 сек. Оно же привело к революции в астрономии - созданию радиоастрономии.

Результаты и методы ядерной Ф. применяются в геологии; с их помощью, в частности, измеряют абс. возраст горных пород и Земли в целом (см. Геохронология).

Физика и техника. Ф. образует фундамент главнейших направлений техники. Электротехника и энергетика, радиотехника и электроника, светотехника, строит. техника, гидротехника, значит. часть воен. техники выросли на основе Ф. Благодаря сознат. использованию физ. законов техника из области случайных находок вышла на широкую дорогу целенаправленного развития. Если в 19 в. между физ. открытием и первым его технич. применением проходили десятки лет, то теперь этот срок сократился до неск. лет.

В свою очередь, развитие техники оказывает не менее существ. влияние на совершенствование экспериментальной Ф. Без развития электротехники, электроники, технологии произ-ва очень прочных и лишённых примесей материалов было бы невозможно создание таких устройств, как ускорители заряженных частиц, огромные пузырьковые и искровые камеры, полупроводниковые приборы и т. д.

Возникновение ядерной энергетики связано с крупными достижениями ядерной Ф. Ядерные реакторы-размножители на быстрых нейтронах могут использовать природный уран и торий, запасы к-рого велики. Осуществление управляемого термоядерного синтеза практически навсегда избавит человечество от угрозы энергетич. кризиса.

Техника будущего будет основываться не на готовых природных материалах, а главным образом на синтетич. материалах с наперёд заданными свойствами. Создание и исследование структуры вещества играют в решении этой проблемы определяющую роль.

Развитие электроники и создание совершенных ЭВМ, базирующиеся на достижениях Ф. твёрдого тела, неизмеримо расширили творческие возможности человека, а также привели к построению "думающих" автоматов, способных быстро принимать решения в обстановке, требующей обработки большого объёма информации.

Огромное повышение производительности труда достигается благодаря использованию ЭВМ (автоматизация производства и управления). По мере усложнения нар. х-ва объём перерабатываемой информации становится чрезвычайно большим. Поэтому очень важно дальнейшее усовершенствование вычислит. машин - увеличение их быстродействия и объёма памяти, повышение надёжности, уменьшение габаритов и стоимости. Эти усовершенствования возможны только на основе новых достижений Ф.

Совр. Ф. стоит у истоков революц. преобразований во всех областях техники. Она вносит решающий вклад в научно-техническую революцию.

О развитии Ф. в СССР см. 24-й том БСЭ, книга II-"СССР", раздел Физические науки. См. также статьи Физические журналы, Физические институты.

Лит.: История и метододргия науки. Энгельс Ф.,

Диалектика природы, М., 1975; Ленин В. И., Материализм и эмпириокритицизм, Полн. собр. соч., 5 изд., т. 18; его ж е, Философские тетради, там же, т. 29; Дорфман Я. Г., Всемирная история физики с древнейших времен до конца XVIII века, М., 1974; Кудрявцев П. С., История физики, т. 1 - 3, М., 1956-71; Лауэ М., История физики, пер. с нем., М., 1956; Льоцци М., История физики, пер. с итал., М., 1970; Марков М. А., О природе материи, М., 1976.

Общая физика. Хайкин С.Э., Физические основы механики, 2 изд., М., 1971; Стрелков С. П., Механика, 3 изд., М., 1975; Ландсберг Г. С., Оптика, 5 изд., М., 1976; Кикоин А. К., Кикоин И. К., Молекулярная физика, 2 изд., М., 1976; Калашников С. Г.,

Электричество, 3 изд., М., 1970; Горелик Г. С., Колебания и волны. Введение в акустику, радиофизику н оптику, 2 изд., М., 1959; Борн М., Атомная физика, пер. с англ., 3 изд., М., 1970; Шпольский Э. В., Атомная физика, т. 1, 6 изд., т. 2, 4 изд., М., 1974;

Фейнман Р., ЛейтонР., Сэндс М., Фейнма-новские лекции по физике, пер. с англ., в. 1 - 9, М., 1965-67; Берклеевский курс физики, т. 1 - 5, пер. с англ., М., 1971 - 74.

Теоретическая физика. Курс теоретической физики: Ландау Л. Д., Лифшиц Е. М., т. 1, Механика, 3 изд., М., 1973; т. 2, Теория поля, 6 изд., М., 1973; т. 3, Квантовая механика. Нерелятивистская теория, 3 изд., М., 1974; Бересте ц-кий В. Б., Лифшиц Е. М., Питаевский Л. П., т. 4, ч. 1, Релятивистская квантовая теория, М., 1968; Лифшиц Е. М., Питаевский Л. П., т. 4, ч. 2, Релятивистская квантовая теория, М., 1971; Ландау Л. Д., Лифшиц Е. М., т. 5, ч. 1, Статистическая физика, 3 изд., М., 1976; и х ж е, Механика сплошных сред, 2 изд., М., 1954; их же, Электродинамика сплошных сред, М., 1959; Голдстейн Г., Классическая механика, пер. с англ., 2 изд., М., 1975; Леонтович М. А., Введение в термодинамику, 2 изд., М. - Л., 1952; его ж е, Статистическая физика, М.- Л., 1944; Кубо Р., Термодинамика, пер. с англ., М., 1970; его же, Статистическая механика, пер. с англ., М., 1967; Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; БорнМ., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Давыдов А. С., Квантовая механика, 2 изд., М., 1973; Блохинцев Д. И., Основы квантовой механики, 5 изд., М., 1976; Дирак П. А. М.,Принципы квантовой механики, пер. с англ., М., 1960.

Монографии. Абрикосов А. А., Введение в теорию нормальных металлов, М., 1972; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., М., 1963; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Бете Г., 3оммерфельд А., Электронная теория металлов, пер. с нем., Л.-М., 1938; Блохин М. А., Физика рентгеновских лучей, 2 изд., М., 1957; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.-Л., 1946; Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, 3 изд., М., 1976; Бриллюэн Л., Наука и теория информации, пер. с англ., М., 1960; Вонсовский С. В., Магнетизм, М., 1971; ГиббсД ж. В., Термодинамические работы, пер. с англ., М.-Л., 1950; его же, Основные принципы статистической механики, пер. с англ., М. - Л., 1946; Гинзбург В. Л., О физике и астрофизике, 2 изд., М., 1974; Ансельм А. И., Введение в теорию полупроводников, М.-Л., 1962; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Зельдович Я. Б., Новиков И. Д., Теория тяготения и эволюция звезд, М., 1971; Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966; 3оммерфельд А., Строение атома и спектры, пер. с нем., т. 1-2, М., 1956; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Капица П. Л., Эксперимент, теория, практика, М., 1974; Карслоу Г., Егер Д., Теплопроводность твердых тел, пер. с англ., М., 1964; КиттельЧ., Введение в физику твердого тела, пер. с англ., 2 изд., М., 1962; Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с англ., 2 изд., М., 1956; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, М., 1975; Нейман И., фон, Математические основы квантовой механики, пер. с нем., М., 1964; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Скучик Е., Основы акустики, пер. с англ., т. 1 - 2, М., 1976; Стретт Дж. В. (Лорд Рэ-лей), Теория звука, т. 1-2, 2 изд., М., 1955; Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961; Френкель Я.И., Введение в теорию металлов, 3 изд., М., 1958; Эйнштейн А., Инфельд Л., Эволюция физики, пер. с англ., 3 изд., М., 1965.

Энциклопедии и справочники: Физический энциклопедический словарь, т. 1 - 5, М., 1960-66; Encyclopaedic Dictionary of Physics (ed. J. Thewlis), v. 1 - 9, Oxf.-N. Y., 1961 - 64; Яворский Б. М., Детлаф А. А., Справочник по физике для инженеров и студентов вузов, 6 изд., М., 1974. А. М. Прохоров.

ФИЗИКА ATМОСФЕРЫ, раздел метеорологии, изучающий физ. закономерности процессов и явлений, происходящих в атмосфере, в т. ч. определяющих строение и самой атмосферы: свойства составляющих атмосферу газов, поглощение и излучение ими радиации, распределение темп-ры и давления, испарение и конденсацию водяного пара, образование облаков и осадков, разнообразные формы движения в атмосфере и т. д.

Преобразование солнечной энергии и теплового излучения самой атмосферы и подстилающей поверхности изучаются актинометрией (в широком смысле этого термина) и атмосферной оптикой. К последней относятся также и различные оптич. явления в атмосфере (сумерки, заря, гало, цвет и поляризация небосвода, видимость предметов и др.). Электрич. явления в атмосфере (молнии и др. электрич. разряды) и её электрич. свойства (проводимость, ионизация, электрич. токи, объёмные заряды, заряды облаков и осадков и т. д.) - предмет учения об атмосферном электричестве. Распространение и генерация звука в реальной атмосфере и исследование последней акустич. методами - предмет атмосферной акустики. К Ф. а. относится также физика облаков и микропроцессов, приводящих к образованию твёрдых и жидких аэрозолей, включая искусственное во