БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ХРАМОВАЯ МУЗЫКА, культовая музыка.
ЦИНКА СУЛЬФИД, сернистый цинк, ZnS, белый порошок.
ЧЕРСКОГО ХРЕБЕТ, цепи Черского, горная система на С.-В. СССР.
ЧУВАШСКИЙ УНИВЕРСИТЕТ имени И. H. Ульянова.
ТАМОЖНЯ (от тамга), гос. учреждение, контролирующее провоз грузов.
ШТЕТТИНСКИЙ МИР 1570, между Швецией и Данией.
ЭКСПОНОМЕТРИЯ, раздел фотографии, в к-ром определяют условия экспонирования.
ЭССЕ (франц. essai - попытка, проба, очерк, от лат. exagium - взвешивание), прозаич. сочинение.
ТЕАТР ТЕНЕЙ, вид театр, зрелища.
ЕККЕ, текийе, завие (тур. tekke, zaviye), обитель мусульм. дервишей в Турции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2197031823552198549321кта, не имеющего аналога в классич. Ф. Обменная энергия играет гл. роль в образовании ковалентной связи как в молекулах, так и в кристаллах, а также в явлениях ферромагнетизма и антиферромагнетизма. Эта энергия имеет важное значение во внутриядерных взаимодействиях.

Такие ядерные процессы, как а-распад, удалось объяснить только с помощью квантового эффекта прохождения частиц сквозь потенциальный барьер (см. Туннельный эффект).

Была построена квантовая теория рассеяния (см. Рассеяние микрочастиц), приводящая к существенно другим результатам, чем классич. теория рассеяния. В частности, оказалось, что при столкновениях медленных нейтронов с ядрами поперечное сечение взаимодействия в сотни раз превышает поперечные размеры сталкивающихся частиц. Это имеет исключительно важное значение для ядерной энергетики.

На основе квантовой механики была построена зонная теория твёрдого тела.

Из квантовой теории вынужденного излучения, созданной Эйнштейном ещё в 1917, в 50-х гг. возник новый раздел радиофизики: были осуществлены генерация и усиление электромагнитных волн с помощью квантовых систем. Н. Г. Басов, А. М. Прохоров и независимо Ч. Таунс создали микроволновой квантовый генератор (мазер), в котором использовалось вынужденное излучение возбуждённых молекул. В 60-х гг. был создан лазер-квантовый генератор электромагнитных волн в видимом диапазоне длин волн (см. Квантовая электроника).

Квантовая статистика. Подобно тому, как на основе классич. законов движения отд. частиц была построена теория поведения большой их совокупности - классич. статистика, на основе квантовых законов движения частиц была построена квантовая статистика. Последняя описывает поведение макроскопич. объектов в том случае, когда классич. механика неприменима для описания движения слагающих их частиц. В этом случае квантовые свойства микрообъектов отчётливо проявляются в свойствах макроскопич. тел.

Математич. аппарат квантовой статистики существенно отличается от аппарата классич. статистики, т. к., как говорилось выше, нек-рые физ. величины в квантовой механике могут принимать дискретные значения. Но содержание самой статистич. теории равновесных состояний не претерпело глубоких изменений. В квантовой статистике, как и вообще в квантовой теории систем многих частиц, важную роль играет принцип тождественности одинаковых частиц (см. Тождественности принцип). В классич. статистике принимается, что перестановка двух одинаковых (тождественных) частиц меняет состояние. В квантовой статистике состояние системы не меняется при такой перестановке. Если частицы (или квазичастицы) имеют целый спин (они наз. бозонами), то в одном и том же квантовом состоянии может находиться любое число частиц. Системы таких частиц описываются Бозе-Эйнштейна статистикой. Для любых частиц (квазичастиц) с полуцелым спином (фермионов) справедлив принцип Паули, и системы этих частиц описываются Ферми-Дирака статистикой.

Квантовая статистика позволила обосновать теорему Нернста (третье начало термодинамики) - стремление энтропии к нулю при абс. темп-ре Т -> 0.

Квантовая статистич. теория равновесных процессов построена в столь же законченной форме, как и классическая. Заложены также основы квантовой статистич. теории неравновесных процессов. Уравнение, описывающее неравновесные процессы в квантовой системе и называемое основным кинетич. уравнением, позволяет в принципе проследить за изменением во времени вероятности распределения по квантовым состояниям системы.

Квантовая теория поля (КТП). Следующий этап в развитии квантовой теории - распространение квантовых принципов на системы с бесконечным числом степеней свободы (поля физические) и описание процессов рождения и превращения частиц - привёл к КТП, наиболее полно отражающей фундаментальное свойство природы - корпускулярно-волновой дуализм.

В КТП частицы описываются с помощью квантованных полей, представляющих собой совокупность операторов рождения и поглощения частиц в различных квантовых состояниях. Взаимодействие квантованных полей приводит к различным процессам испускания, поглощения и превращения частиц. Любой процесс в КТП рассматривается как уничтожение одних частиц в определённых состояниях и появление других в новых состояниях.

Первоначально КТП была построена применительно к взаимодействию электронов, позитронов и фотонов (квантовая электродинамика). Взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется путём обмена фотонами, причём электрич. заряд е частицы представляет константу, характеризующую связь поля заряженных частиц с электромагнитным полем (полем фотонов).

Идеи, положенные в основу квантовой электродинамики, были в 1934 использованы Э. Ферми для описания процессов бета-распада радиоактивных атомных ядер с помощью нового типа взаимодействия (к-рый, как выяснилось впоследствии, представляет собой частный случай т.н. слабых взаимодействий). В процессах электронного бета-распада один из нейтронов ядра превращается в протон и одновременно происходит испускание электрона и электронного антинейтрино. Согласно КТП, такой процесс можно представить как результат контактного взаимодействия (взаимодействия в одной точке) квантованных полей, соответствующих четырём частицам со спином 1/2: протону, нейтрону, электрону и антинейтрино (т. е. четырёхфермионным взаимодействием).

Дальнейшим плодотворным применением идей КТП явилась гипотеза X.

Юкавы (1935) о существовании взаимодействия между полем нуклонов (протонов и нейтронов) и полем мезонов (в то время ещё не обнаруженных экспериментально). Ядерные силы между нуклонами, согласно этой гипотезе, возникают в результате обмена нуклонов мезонами, а короткодействующий характер ядерных сил объясняется наличием у мезонов сравнительно большой массы покоя. Мезоны с предсказанными свойствами (пимезоны) были обнаружены в 1947, а взаимодействие их с нуклонами оказалось частным проявлением сильных взаимодействий.

КТП является, т. о., основой для описания элементарных взаимодействий, существующих в природе: электромагнитных, сильных и слабых. Наряду с этим методы КТП нашли широкое применение и в теории твёрдого тела, плазмы, атомного ядра, поскольку мн. процессы в этих средах связаны с испусканием и поглощением различного рода элементарных возбуждений - квазичастиц (фононов, спиновых волн и др.).

Из-за бесконечного числа степеней свободы у поля взаимодействие частиц - квантов поля - приводит к математич. трудностям, к-рые до сих пор не удалось полностью преодолеть. Однако в теории электромагнитных взаимодействий любую задачу можно решить приближённо, т. к. взаимодействие можно рассматривать как малое возмущение свободного состояния частиц (вследствие малости безразмерной константы а = e2/hc=1/137, характеризующей интенсивность электромагнитных взаимодействий). Теория всех эффектов в квантовой электродинамике находится в полном согласии с опытом. Тем не менее положение в этой теории нельзя считать благополучным, т. к. для нек-рых физ. величин (массы, электрич. заряда) при вычислениях по теории возмущений получаются бесконечные выражения (расходимости). Их исключают, используя т. н. технику перенормировок, заключающуюся в том, что бесконечно большие величины для массы и заряда частицы заменяются их наблюдаемыми значениями. Большой вклад в разработку квантовой электродинамики внесли (в кон. 40-х гг.) С. Томонага, Р.

Фейнман, Ю. Швингер.

Разработанные в квантовой электродинамике методы в дальнейшем пытались применить для расчёта процессов слабого и сильного (ядерного) взаимодействий, однако здесь встретился ряд проблем.

Слабые взаимодействия присущи всем элементарным частицам, кроме фотона. Они проявляются в распадах большинства элементарных частиц и в нек-рых других их превращениях. Константа слабых взаимодействий, определяющая интенсивность протекания вызванных ими процессов, растет с увеличением энергии частиц.

После экспериментально установленного факта несохранения пространств. чётности в процессах слабого взаимодействия (1956) была предложена т. н. универсальная теория слабых взаимодействий, близкая к фермиевской теории в-распада. Однако, в отличие от квантовой электродинамики, эта теория не позволяла вычислять поправки в высших порядках теории возмущений, т. с. теория оказалась неперенормируемой. В кон. 60-х гг. сделаны попытки построения перенормируемой теории слабых взаимодействий. Успех был достигнут на основе т.н. калибровочных теорий. Была создана объединённая модель слабых и электромагнитных взаимодействий. В этой модели наряду с фотоном - переносчиком электромагнитных взаимодействий между заряженными частицами, должны существовать переносчики слабых взаимодействий - т. н. промежуточные векторные бозоны. Предполагается, что интенсивность взаимодействий промежуточных бозонов с др. частицами такая же, как и у фотонов. Т. к. радиус слабых взаимодействий очень мал (меньше 10-15 см), то, согласно законам квантовой теории, масса промежуточных бозонов должна быть очень велика: неск. десятков протонных масс. На опыте эти частицы пока не обнаружены. Должны существовать как заряженные(W- и W+), так и нейтральный (Z°) векторные бозоны. В 1973 экспериментально наблюдались процессы, к-рые, по-видимому, можно объяснить существованием нейтральных промежуточных бозонов. Однако справедливость новой единой теории электромагнитных и слабых взаимодействий нельзя считать доказанной.

Трудности создания теории сильных взаимодействий связаны с тем, что из-за большой константы связи методы теории возмущений оказываются здесь неприменимыми. Вследствие этого, а также в связи с наличием огромного экспериментального материала, нуждающегося в теоретич. обобщении, в теории сильных взаимодействий развиваются методы, основанные на общих принципах квантовой теории поля- релятивистской инвариантности, локальности взаимодействия (означающей выполнение условия причинности; см. Причинности принцип) и др. К ним относятся метод дисперсионных соотношений и аксиоматич. метод (см. Квантовая теория поля). Аксиоматич. подход является наиболее фундаментальным, но пока не обеспечивает достаточного количества конкретных результатов, допускающих экспериментальную проверку. Наибольшие практич. успехи в теории сильных взаимодействий получены благодаря применению принципов симметрии.

Делаются попытки построить единую теорию слабых, электромагнитных и сильных взаимодействий (по типу калибровочных теорий).

Принципы симметрии и законы сохранения. Физ. теории позволяют по начальному состоянию объекта определить его поведение в будущем. Принципы симметрии (или инвариантности) носят общий характер, им подчинены все физ. теории. Симметрия законов Ф. относительно нек-рого преобразования означает, что эти законы не меняются при проведении данного преобразования. Поэтому принципы симметрии можно установить на основании известных физ. законов. С др. стороны, если теория к.-л. физ. явлений ещё не создана, открытые на опыте симметрии играют эвристич. роль при построении теории. Отсюда особая важность экспериментально установленных симметрии сильно взаимодействующих элементарных частиц - адронов, теория к-рых, как уже говорилось, не построена.

Существуют общие симметрии, справедливые для всех физ. законов, для всех видов взаимодействий, и приближённые симметрии, справедливые лишь для определённого круга взаимодействий или даже одного вида взаимодействия. Т. о., наблюдается иерархия принципов симметрии. Симметрии делятся на пространственно-временные, или геометрические, и внутренние симметрии, описывающие специфич. свойства элементарных частиц. С симметриями связаны законы сохранения. Для непрерывных преобразонаний эта связь была установлена в 1918 Э. Нётер на основе самых общих предположений о математич. аппарате теории (см. Нётер теорема, Сохранения законы).

Справедливыми для всех типов взаимодействий являются симметрии законов Ф.

относительно следующих непрерывных пространственно-временных преобразований: сдвига и поворота физ. системы как целого в пространстве, сдвига во времени (изменения начала отсчёта времени). Инвариантность (неизменность) всех физ. законов относительно этих преобразований отражает соответственно однородность и изотропию пространства и однородность времени. С этими симметриями связаны (соответственно) законы сохранения импульса, момента количества движения и энергии. К общим симметриям относятся также инвариантность по отношению к преобразованиям Лоренца и калибровочным преобразованиям (1-го рода)- умножению волновой функции на т. н. фазовый множитель, не меняющий квадрата её модуля (последняя симметрия связана с законами сохранения электрического, барионного и лептонного зарядов), и нек-рые другие.

Существуют также симметрии, отвечающие дискретным преобразованиям: изменению знака времени (см. Обращение времени), пространственной инверсии (т. н. зеркальная симметрия природы), зарядовому сопряжению. На основе приближённой SU (З)-симметрии (см. Сильные взаимодействия) М. Гелл-Ман (1962) создал систематику адронов, позволившую предсказать существование неск. элементарных частиц, открытых позднее экспериментально.

Систематику адронов можно объяснить, если предположить, что все адроны "построены" из небольшого числа (в наиболее распространённом варианте - из трёх) фундаментальных частиц - кварков и соответствующих античастиц - антикварков. Существуют различные кварковые модели адронов, однако экспериментально обнаружить свободные кварки пока не удалось. В 1975-76 были открыты две новые сильно взаимодействующие частицы (ф1 и ф2) с массами, превышающими утроенную массу протона, и временами жизни 10-20 - 10-21сек. Объяснение особенностей рождения и распада этих частиц, по-видимому, требует введения дополнительного, четвёртого, кварка, к-рому приписывается квантовое число "очарование". Помимо этого, по совр. представлениям, каждый кварк существует в трёх разновидностях, отличающихся особой характеристикой - "цветом".

Успехи в классификации адронов на основе принципов симметрии очень велики, хотя причины возникновения этих симметрии до конца не ясны; возможно, они действительно обусловлены существованием и свойствами кварков.

IV. Современная экспериментальная физика

Ещё в нач. 20 в. такие эпохальные открытия, как открытие Резерфордом атомного ядра, можно было делать с помощью сравнительно простой аппаратуры. Но в дальнейшем эксперимент стал очень быстро усложняться и экспериментальные установки начали приобретать промышленный характер. Неизмеримо возросла роль измерительной и вычислительной техники. Современные экспериментальные исследования в области ядра и элементарных частиц, радиоастрономии, квантовой электроники и Ф. твёрдого тела требуют небывалых масштабов и затрат средств, к-рые зачастую доступны лишь крупным гос-вам или даже группам гос-в с развитой экономикой.

Огромную роль в развитии ядерной Ф. и Ф. элементарных частиц сыграли разработка методов наблюдения и регистрации отд. актов превращений элементарных частиц (вызванных их столкновениями друг с другом и с атомными ядрами) и создание ускорителей заряженных частиц, положившее начало развитию Ф. высоких энергий. Открытие В. И. Векслером

(1944) и независимо Э. М. Макмилланом (1945) принципа автофазировки повысило предел достижимых энергий частиц в тысячи раз. Ускорители со встречными пучками значительно увеличили эффективную энергию столкновения частиц. Были созданы высокоэффективные счётчики заряженных частиц, действие к-рых основано на различных принципах: газоразрядные, сцинтилляционные, черенковские и др. Фотоумножители позволяют регистрировать единичные фотоны. Наиболее полную и точную информацию о событиях микромира получают с помощью пузырьковой и искровой камер и толстослойных фотоэмульсий, в к-рых можно непосредственно наблюдать следы (треки) пролетевших заряженных частиц. Построены детекторы, позволяющие регистрировать редчайшие события - столкновения нейтрино с атомными ядрами.

Подлинная революция в экспериментальном исследовании взаимодействий элементарных частиц связана с применением ЭВМ для обработки информации, получаемой от регистрирующих устройств. Для фиксации маловероятных процессов приходится анализировать десятки тысяч фотографий треков. Вручную это заняло бы столь много времени, что получение нужной информации стало бы практически невозможным. Поэтому изображения треков с помощью спец. устройств преобразуются в серию электрич. импульсов и дальнейший анализ треков производится с помощью ЭВМ. Это чрезвычайно сокращает время между экспериментом и получением обработанной информации. В искровых камерах регистрация и анализ треков частиц осуществляются автоматически с использованием ЭВМ непосредственно в экспериментальной установке.

Значение ускорителей заряженных частиц определяется след. обстоятельствами. Чем больше энергия (импульс) частицы, тем меньше (согласно принципу неопределённости) размеры объектов или их деталей, к-рые можно различить при столкновениях частицы с объектом. К 1977 эти минимальные размеры составляют 10-15 см. Изучая рассеяние электронов высокой энергии на нуклонах, удалось обнаружить элементы внутр. структуры нуклонов - распределение электрич. заряда и магнитного момента внутри этих частиц (т. н. формфакторы). Рассеяние электронов сверхвысоких энергий на нуклонах указывает на существование внутри нуклонов нескольких отдельных образований сверхмалых размеров, названных партонами. Возможно, пар-тоны представляют собой гипотетические кварки.

Другая причина интереса к частицам высоких энергий - рождение при их столкновениях с мишенью новых частиц всё большей массы. Всего известно 34 стабильных и квазистабильных (т. е. не распадающихся за счёт сильных взаимодействий) частиц (с античастицами) и более двухсот резонансов, причём подавляющее их число открыто на ускорителях. Исследование рассеяния частиц сверхвысоких энергий должно способствовать выяснению природы сильных и слабых взаимодействий.

Изучены самые различные типы ядерных реакций. На ускорителе Объединённого ин-та ядерных исследований в г. Дубне впервые осуществлено столкновение релятивистских ядер. Успешно идёт синтез трансурановых элементов. Получены ядра антидейтерия, антитрития и антигелия. На ускорителе в Серпухове открыта новая закономерность сильных взаимодействий - рост полного сечения взаимодействия адронов очень высоких энергий при их столкновении с увеличением энергии столкновения (т. н. серпуховский эффект).

Развитие радиофизики получило новое направление после создания радиолокационных станций во время 2-й мировой войны 1939-45. Радиолокаторы нашли широкое применение в авиации и мор. транспорте, в космонавтике. Была осуществлена локация небесных тел: Луны, Венеры и др. планет, а также Солнца. Сооружены гигантские радиотелескопы, улавливающие излучения космич. тел со спектральной плотностью потока энергии 10-26 эрг/см2*сек*гц. Информация о космич. объектах неизмеримо возросла. Были открыты радиозвёзды и радиогалактики с мощным излучением в диапазоне радиоволн, а в 1963 - наиболее удалённые от нас квазизвёздные объекты- квазары. Светимость квазаров в сотни раз превышает светимость ярчайших галактик. Разрешающая способность совр. радиотелескопов, использующих передвижные антенны, управляемые ЭВМ, достигает угловой секунды (для излучения с длиной волны в неск. см). При разносе антенн на большие расстояния (порядка 10 тыс. км) получается ещё более высокое разрешение (в сотые доли угловой секунды).

Исследование радиоизлучения небесных тел помогло установить источники первичных космич. лучей (протонов, более тяжёлых атомных ядер, электронов). Этими источниками оказались вспышки сверхновых звёзд. Было открыто реликтовое излучение - тепловое излучение, соответствующее температуре 2,7 К. В 1967 открыты пульсары - быстро вращающиеся нейтронные звёзды. Пульсары создают направленное излучение в радиодиапазоне, видимом и рентгеновском диапазонах, интенсивность к-рого периодически меняется из-за вращения звёзд.

Большую роль в изучении околоземного космич. пространства и далёкого космоса сыграли запуски космич. станций: были открыты радиационные пояса Земли, обнаружены космич. источники рентгеновского излучения и всплески у-излучения (эти виды излучения поглощаются атмосферой Земли и не доходят до её поверхности).

Совр. радиофизич. методы позволяют осуществлять космич. связь на расстояния в десятки и сотни млн. км. Необходимость передачи большого объёма информации стимулировала разработку принципиально новых, оптич. линий связи с применением волоконных светопроводов.

Высочайшей точности достигли измерения амплитуды колебаний макроскопич. тел. С помощью радиотехнич. и оптич. датчиков можно регистрировать механич. колебания с амплитудой порядка 10-15 см (имеется возможность повысить этот предел до 10-16 -10-19 см).

Для исследования структуры кристаллов и органич. молекул применяются высокоточные автоматические рентгеновские и нейтронные дифрактометры, в сотни тыс. раз сократившие время расшифровки структур. В структурных исследованиях применяются также электронные микроскопы большой разрешающей силы. Нейтронография позволяет изучать и магнитную структуру твёрдых тел.

Для исследования структуры и распределения электронной плотности в веществе успешно применяются электронный парамагнитный резонанс (открыт Е. К. Завойским в 1944), ядерный магнитный резонанс (открыт Э. Пёрселлом и Ф. Б лохом в 1946), Мёссбауэра эффект (открыт Р. Л. Мёссбауэром в 1958). Совершенствуется исследование структуры атомов и молекул органич. и неорганич. веществ по их спектрам излучения и поглощения в широком диапазоне частот (в т. ч. с применением лазерного излучения; см. Спектроскопия лазерная).

В гидроакустике открыто и исследовано явление сверхдальнего распространения звука в морях и океанах - на расстояния в тысячи км (амер. учёные М. Ивинг, Дж. Ворцель, 1944, и независимо сов. физики Л. М. Бреховских, Л. Д. Розенберг и др., 1946).

В последнее десятилетие развиваются акустич. методы исследования твёрдых тел, основанные на применении ультразвуковых и гиперзвуковых волн (см. Ультразвук, Гиперзвук), а также поверхностных акустич. волн.

Быстрое развитие Ф. полупроводников совершило переворот в радиотехнике и электронике. Полупроводниковые приборы вытеснили электровакуумные лампы. Резко уменьшились и стали надёжнее радиотехнич. устройства и вычислит. машины, существенно уменьшилась потребляемая ими мощность. Появились интегральные схемы, сочетающие на одном небольшом (в десятки мм2) кристалле тысячи и более электронных элементов. Процесс последовательной микроминиатюризации радиоэлектронных приборов и устройств привёл к созданию на неск. кристаллах т. н. микропроцессеров,

выполняющих операционные функции ЭВМ. Небольшие вычислительные машины изготавливаются на одном кристалле.

ЭВМ стали неотъемлемой частью физ. исследований и применяются как для обработки экспериментальных данных, так и в теоретич. расчётах, особенно тех, к-рые ранее были неосуществимыми из-за огромной трудоёмкости.

Большое значение как для самой науки, так и для практических применений имеет исследование вещества при экстремальных условиях: при очень низких или очень высоких температурах, сверхвысоком дав