БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ХРАМОВАЯ МУЗЫКА, культовая музыка.
ЦИНКА СУЛЬФИД, сернистый цинк, ZnS, белый порошок.
ЧЕРСКОГО ХРЕБЕТ, цепи Черского, горная система на С.-В. СССР.
ЧУВАШСКИЙ УНИВЕРСИТЕТ имени И. H. Ульянова.
ТАМОЖНЯ (от тамга), гос. учреждение, контролирующее провоз грузов.
ШТЕТТИНСКИЙ МИР 1570, между Швецией и Данией.
ЭКСПОНОМЕТРИЯ, раздел фотографии, в к-ром определяют условия экспонирования.
ЭССЕ (франц. essai - попытка, проба, очерк, от лат. exagium - взвешивание), прозаич. сочинение.
ТЕАТР ТЕНЕЙ, вид театр, зрелища.
ЕККЕ, текийе, завие (тур. tekke, zaviye), обитель мусульм. дервишей в Турции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2197031823552198549321ольшинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусств, старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой темп-ре. Старение применяют гл. обр. для повышения прочности и твёрдости конструкц. материалов (алюминиевых, магниевых, медных, никелевых сплавов и нек-рых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и темп-ры старения колеблется от десятков мин до неск. сут. Отпуску подвергают сплавы, гл. обр. стали, закалённые на мартенсит. Осн. параметры процесса - темп-pa нагрева и время выдержки, а в нек-рых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении,- распад термодинамически неустойчивого пересыщенного раствора. Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали. Для мартенсита характерно большое число дефектов кристаллич. строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначит. упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одноврем. ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллич. соединений. Причина упрочнения при этом та же, что и при старении. Термины "отпуск" и "старение" часто используют как синонимы.

Т. о., вызывая разнообразные по природе структурные изменения, позволяет управлять строением металлов и сплавов и получать изделия с требуемым комплексом механич., физич. и химич. свойств. Благодаря этому, а также простоте и дешевизне оборудования Т. о. является самым распространённым в пром-сти способом изменения свойств металлич. материалов.

На металлургич. з-дах применяют гомогенизац. отжиг слитков для повышения их пластичности перед обработкой давлением, рекристаллизац. отжиг листов, лент, труб и проволоки для снятия наклёпа между операциями холодной обработки давлением и после неё, закалку, отпуск, старение и термомеханич. обработку для упрочнения проката и прессованных изделий. На маш.-строит, з-дах отжигают поковки и др. заготовки для уменьшения твёрдости и улучшения обрабатываемости резанием, применяют закалку, отпуск, старение и химико-термич. обработку разнообразных деталей машин, а также инструмента для повышения их прочности, твёрдости, ударной вязкости, сопротивления усталости и износу и отжигают изделия для уменьшения остаточных напряжений. В приборостроении, электротехнич. и радиотехнич. пром-сти с помощью отжига, закалки, отпуска и старения изменяют механич., электрич., магнитные и др. физич. свойства металлов и сплавов.

О величине изменения механич. свойств при Т. о. металлов дают представление след, примеры. Рекристаллизац. отжиг холоднокатаной меди снижает предел прочности с 400 до 220 Мн/м2(с 40 до 22 кгс/мм2), одновременно повышая относит, удлинение с 3 до 50%. Отожжённая сталь У8 имеет твёрдость 180 НВ; закалка повышает твёрдость этой стали до 650 НВ. Сталь 38 ХМЮА после закалки имеет твёрдость 470 ЯУ, а после азотирования твёрдость поверхностного слоя достигает 1200 HV. Предел прочности дуралюмина Д16 после отжига, закалки и естеств. старения равен соответственно 200, 300 и 450 Мк/л2 (20, 30 и 45 кгс/мм2). У бериллиевой бронзы Бр. Б2 предел упругости ао,оо2 после закалки равен 120 Мн/м2 (12 кгс/мм2), а после старения 680 Мн/м2 (68 кгс/мм2).

Лит.: Б о ч в а р А. А,, Основы термической обработки сплавов, 5 изд., М.- Л., 1940; Гуляев А. П., Термическая обработка стали, 2 изд., М., 1960; Металловедение и термическая обработка стали. Справочник, под ред. М. Л. Бернштейна и А. Г. Рахштадта, 2 изд., т. 1 - 2, М., 1961 - 62; H ов и к о в И. И., Теория термической обработки металлов, М., 1974. И. И. Новиков.

ТЕРМИЧЕСКАЯ ПЕРЕРАБОТКА ТОПЛИВ, технологич. процесс термич. разложения природных топлив с целью улучшения их качества или получения хим. продуктов для пром. использования, Т. п. т. может осуществляться самостоятельно или в присутствии водорода, кислорода и катализаторов. В частности, Т. п. т. применяют для произ-ва металлургич. кокса (см. Коксование), полукокса из угля и торфа (см. Полукоксование), высококачеств. бензина, непредельных углеводородов (этилена, пропилена) из нефт. сырья (см. Крекинг), древесного угля из древесины (см. Сухая перегонка древесины), сажи из горючих газов, ароматич. углеводородов из угля и нефти, жидких топлив из горючих сланцев и др. продуктов.

ТЕРМИЧЕСКАЯ ПЕЧЬ, промышленная печь для проведения различных операций термич. или химико-термич. обработки металлич. изделий. Т. п. классифицируют по методу работы: периодические (ванная печь, камерная печь, печь аэродинамич. подогрева и др.) и непрерывные (индукционная нагревательная установка, проходная печь, протяжная печь, патентировочная печь и др.).

Для термической обработки прокатной продукции в металлургич. пром-сти наиболее широко применяют проходные и протяжные печи. Закалку, нормализацию и отпуск горячекатаных листов проводят в печах с роликовым подом. Холоднокатаную стальную полосу в рулонах отжигают как в протяжных, так и в колпаковых печах. В протяжных печах проводят термич. обработку полосы из углеродистой и нержавеющей стали и цветных металлов, а также химико-термическую обработку полосы из электротехнич. сталей и подготовку полосы к нанесению на неё различных покрытий (цинкование, алюминирование и т. д.). Сортовой прокат обрабатывают в печах с роликовым подом и в конвейерных печах. Для обработки труб применяют печи с роликовым подом, секционные печи скоростного нагрева, печи с шагающим подом и конвейерные печи. Проволоку в мотках и прутки обрабатывают в печах с роликовым подом, а при небольшом объёме производства - в колпаковых печах. Закалку проволоки в свинце или оцинкование её ведут в патентировочных печах. Термич. обработку колёс и колёсных бандажей для ж.-д. транспорта проводят в вертикальных печах, а иногда в кольцевых печах.

В маш.-строит, пром-сти при индивидуальном или мелкосерийном произ-ве применяют гл. обр. периодич. Т. п., а при крупносерийном и массовом произ-ве - непрерывные Т. п. В литейных, термич. и др. цехах маш.-строит, з-дов широко распространены печи с выкатным подом. На з-дах тяжёлого машиностроения для обработки крупных изделий применяют вертикальные и ямные печи. С увеличением числа операций термич. обработки в атмосфере контролируемого состава на маш.-строит, з-дах всё чаще устанавливают колпаковые и элеваторные печи. Для непрерывной обработки при крупносерийном произ-ве целесообразно применять толкательные печи, конвейерные печи, печи с роликовым подом, печи с подвижными балками, а иногда кольцевые и карусельные печи. В автомоб., тракторной, подшипниковой и др. отраслях массового машиностроения получают распространение поточные закалочно-отпускные, нормализационно-отпускные, нитроцементационные, цементационные и др. агрегаты. В случае необходимости особо равномерного и быстрого нагрева, а также при тонкой поверхностной цементации или нагреве без окисления и обезуглероживания поверхности небольших деталей применяют ванные печи. Особо точные, скоростные и спец. режимы термич. обработки массовых деталей проводят в индукционных нагревательных печах. Для обработки большемерных и сложных по форме изделий из лёгких металлов в случае повышенных требований к точности режима обработки (гл. обр. в авиац. пром-сти) целесообразны печи аэродинамич. подогрева.

Для обеспечения высокой точности нагрева металла большое число Т. п. проектируют с электрич. обогревом. В результате развития методов нагрева при сжигании газового топлива (нагрев с помощью радиационных труб, струйный нагрев, применение принудительной циркуляции и т. д.) почти все типы Т. п. могут успешно работать и при газовом отоплении; это особенно важно в связи с тем, что большинство заводов получило высококачеств. топливо - природный газ.

Совр. режимы термич. и особенно химико-термич. обработки характеризуются значительной сложностью. Для таких режимов перспективны поточные агрегаты или непрерывные линии, в к-рые включено неск. камер или печей непрерывного действия. Химико-термич. и всё в большем объёме термич. обработку проводят в атмосферах контролируемого состава, для работы с к-рой также наиболее пригодны непрерывные Т. п. Периодич. Т. п. маш.-строит, пром-сти усовершенствуют путём применения атмосфер контролируемого состава, принудительной циркуляции, а также механизации работы и обслуживания.

25J.htm
ТЕРМОДИНАМИЧЕСКАЯ ВЕРОЯТНОСТЬ, см. Вероятность термодинамическая.

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА, объект изучения термодинамики, совокупность физ. тел, к-рые могут взаимодействовать энергетически между собой и с другими телами, а также обмениваться с ними веществом. Т. с. состоят из столь большого числа частиц, что их состояние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией разных веществ, образующих Т. с., и т. д. Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Для равновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковое значение для всех макроскопич. частей системы. Свойства Т. с., находящихся в термодинамич. равновесии, изучает термодинамика равновесных процессов (термостатика); свойства неравновесных систем - термодинамика неравновесных процессов. В термодинамике рассматривают з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами; открытые системы, в к-рых происходит обмен веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; наконец, изолированные Т. с., не обменивающиеся с др. системами ни энергией, ни веществом.

ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА, см. Температурные шкалы.

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ, см. Потенциалы термодинамические.

ТЕРМОДИНАМИЧЕСКИЕ СТЕПЕНИ СВОБОДЫ, независимые параметры, определяющие состояние термодинамической системы. Газы, жидкости, изотропные твёрдые тела в отсутствие внешних силовых полей (электрич., магнитных и др.) имеют обычно две Т. с. с., и в качестве независимых параметров, определяющих их состояние, часто выбирают темп-ру и объём. При изменении в определённых пределах независимых параметров в системе не происходит образования или исчезновения к.-л. фаз (частей системы, обладающих новыми свойствами). Так, изменение темп-ры t воды в пределах 0 °C
ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ, см. Равновесие термодинамическое.

ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ, состояние, в к-ром находится термодинамическая система; Т. с. характеризуется совокупностью макроскопич. параметров, определяющих внутренние свойства системы в данном состоянии и её взаимодействие с внешними телами. Параметрами Т. с. являются: темп-ра, давление, объём системы, электрич. поляризация, намагниченность и т. д. Среди параметров состояния существует определённое количество независимых параметров (оно равно числу термодинамических степеней свободы системы), остальные параметры могут быть выражены через независимые. Так, в уравнении состояния идеального газа pV = RT два параметра (напр., темп-ра Т и объём V) являются независимыми, третий параметр - давление газа р -определяется через Т и V (R - газовая постоянная). В термодинамике различают равновесные состояния (см. Равновесие термодинамическое ) и н е р а вновесные состояния, к-рые изучает термодинамика неравновесных процессов.

ТЕРМОДИФФУЗИЯ (термическая, или тепловая, диффузия), перенос компонент газовых смесей или растворов под влиянием градиента темп-ры. Если разность темп-р поддерживается постоянной, то вследствие Т. в объёме смеси возникает градиент концентрации, что вызывает также и обычную диффузию. В стационарных условиях при отсутствии потока вещества Т. уравновешивается обычной диффузией и в объёме возникает разность концентраций, к-рая может быть использована для изотопов разделения.

Т. в растворах была открыта нем. учёным К. Людвигом (1856) и исследована швейц. учёным Ш. Соре (1879-81). Т. в растворах наз. эффектом Соре. Т. в газах была теоретически предсказана англ. учёным С. Чепменом и швед, учёным Д. Энскогом (1911-17) на основе кинетической теории газов и экспериментально обнаружена англ, учёными С. Чепменом и Ф. Дутсоном в 1917.

В бинарной смеси при постоянном давлении в отсутствии внешних сил полный диффузионный поток вещества равен Ji= -nD12 grad Ci-n(DT/T)grad T, где Dti- коэфф. диффузии, DT -коэфф. Т., п - число частиц смеси в единице объёма, а - ж/и - концентрация частиц г'-й компоненты (i = 1,2). Распределение концентрации в стационарном состоянии может быть найдено из условия ji - 0, откуда grad c< = = - (kT/T) grad T, где kT = DT/D12 - термодиффузионное отношение, пропорциональное произведению концентраций компонент. Коэфф. Т. сильно зависит от межмолекулярного взаимодействия, поэтому его изучение позволяет исследовать межмолекулярные силы в газах.

Лит.: Г р ю К. Э., И б б с Т. Л., Термическая диффузия в газах, пер. с англ., М., 1956. См. также лит. при ст. Термодинамика неравновесных процессов. Д. H. Зубарев.

ТЕРМОЗИТ, то же, что пемза шлаковая.

ТЕРМОЗИТОБЕТОН, то же, что шлакобетон.

ТЕРМОКАРСТ, термический карст, образование просадочных и провальных форм рельефа и подземных пустот вследствие вытаивания подземного льда или оттаивания мёрзлого грунта при повышении среднегодовой темп-ры воздуха или при увеличении амплитуды колебания темп-ры почвы. Т.- специфич. явление области распространения многолетнемёрзлых горных пород. Типичные формы рельефа, образующиеся в результате Т.: озёрная котловина, аласы, западины, блюдца и другие отрицат. формы рельефа, а также провальные образования и полости в подпочвенном слое (гроты, ниши, ямы). Т., как правило, сопутствуют другие процессы (напр., тепловая усадка и гравитационное перемещение оттаявших пород); он может сочетаться с плоскостным и подпочвенным смывом, солифлюкцией, суффозией, эрозией и абразией. Т. развивается также и на территориях стабильной и даже агградирующей криолитозоны в результате нарушений динамич. равновесия в водном и тепловом режимах земной поверхности. Причиной Т. может также стать пром. и гражд. стр-во, вырубка лесов и многие др. факторы хозяйственной деятельности человека.

Комплекс мероприятий по предупреждению и борьбе с Т. включает предохранение многолетнемёрзлых пород и подземных льдов от протаивания при стр-ве и эксплуатации сооружений, предпостроечное оттаивание мёрзлых льдистых оснований, дренаж территорий.

Лит.: Качурин С. П., Термокарст на территории СССР, М., 1961. Ю. Т.Уваркин, А.А.Шарбатян.

ТЕРМОКАУСТИКА (от термо... и греч. kaustikos - жгучий), прижигание с использованием высоких темп-р (напр., раскалённым железным стержнем или платиновым наконечником спец. прибора - термокаутера). В совр. мед. практике применяется гл. обр. гальванокаустика.

ТЕРМОКОПИРОВАЛЬНАЯ БУМАГА, бумага (плёнка), прозрачная для инфракрасных (тепловых) лучей, покрытая с одной стороны тонким слоем термочувствит. вещества; предназначается для термокопирования. В состав термочувствит. слоя входят: воски (карнаубский, церезин, воск монтан и др.); красители (трифенилметановые, родаминовые, аураминовые и др.); твёрдые жиры; иногда пластификаторы. Получаемые копии в зависимости от качества покрытия могут быть использованы либо как одноразовые (конечные) копии, либо как матрицы-шаблоны для последующего размножения на гектографе. В СССР выпускают Т. б., дающую копии чёрного, красного, синего и зелёного цветов; формат листов 297 X X 210 мм.

Лит.: Уэцкий М. И., Техническая бумага для размножения документации, 3 изд., М., 1973.

ТЕРМОКОПИРОВАЛЬНЫЙ АППАРАТ, одно из средств оргтехники, применяется для оперативного копирования и размножения документов термокопированием. Технологич. процесс получения термокопий предусматривает экспонирование термочувствит. материала (отдельно или совместно с носителем копии - обычной бумагой) в инфракрасных лучах и проявление изображения или перенос его на носитель копии. Осн. узлы Т. а. (рис. 1): листопротяжное устройство, стеклянный цилиндр, внутри к-рого находится источник инфракрасного излучения (напр., лампа накаливания), электропривод и вентилятор.

Оригинал и термочувствительный материал, проходя между стеклянным цилиндром и прижимным валиком, облучаются потоком инфракрасных лучей. Привод позволяет осуществлять бесступенчатую регулировку времени экспонирования.

Рис. 1. Термокопнровальный аппарат ТЕКА-И (СССР): а - внешний вид; 6 -схема; 1 - листопротяжное устройство; 2 - ведущий валик; 3 - стеклянный цилиндр; 4 - рефлектор; 5 - лампа; 6 -прижимной валик; 7 - направляющие для вывода копировального комплекта; 8 -вентилятор; 9 - корпус (кожух); 10 -рычаг прижимного валика; 11 - рычаг включения лампы; 12 - направляющие для ввода копировального комплекта.

Рис. 2. Копировальные комплекты (конверты): а - для получения копий при помощи термокопировальной бумаги (косвенный способ); б -для получения копий на термореактивной бумаге (прямой способ).

Копирование на Т. а. можно производить с листовых прозрачных и непрозрачных, односторонних и двусторонних оригиналов со штриховым изображением (текст, чертёж, штриховые рисунки). Прозрачные и полупрозрачные односторонние оригиналы копируют преим. на просвет; непрозрачные односторонние и двусторонние оригиналы копируют только рефлексным способом, в отражённых от оригинала лучах (рис. 2). Производительность Т. а. от 3 до 10 копий в 1 мин; наибольший формат копируемого материала (в разных моделях Т. а.) от 200 X 300 мм до 300 X 450 мм.

Т. а. могут быть также использованы для нанесения на оригиналы защитных покрытий с помощью пластикатной плёнки (ламинирование) и изготовления копий на прозрачных плёнках для проекторов.

Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973 А. Я. Манцен.

ТЕРМОКОПИРОВАНИЕ, копировальный процесс, основанный на свойстве термочувствит. материалов изменять своё состояние под действием тепла (инфракрасных лучей). Термокопии изготовляют в термокопировалъных аппаратах контактным способом (на просвет или в отражённых лучах) на термореактивной бумаге (прямое, или термохимич., копирование) либо на носителе копии с помощью термокопировальной бумаги или плёнки (косвенное, или термопластич., копирование) с оригиналов, выполненных тушью, чёрным карандашом, отпечатанных на пишущей машине или типографским способом (элементы изображения таких оригиналов способны интенсивно поглощать тепло).

При экспонировании в инфракрасном свете светлые участки оригинала (пробелы) отражают большую часть лучей, а тёмные (элементы изображения)- поглощают лучи и при этом нагреваются. При прямом Т. тепло нагретого элемента оригинала вызывает в соприкасающемся с ним участке чувствит. слоя термореактивной бумаги хим. реакцию, вследствие к-рой образуется контрастное тёмное вещество (рис., а). При косвенном Т. чувствит. слой термопластич. плёнки (или термокопировальной бумаги) под действием тепла расплавляется и переносится на носитель копии (рис., б). Копии на термореактивной бумаге со временем темнеют вследствие воздействия тепла и света на пробелы, к-рые остаются теплочувствительными, поэтому срок их хранения ограничен. Термопластичное копирование позволяет получать печатные формы для размножения документов средствами оперативной полиграфии, а также копии для длительного хранения.

Схемы процессов термокопирования: а - прямого, б - косвенного, или переносного; 1 - инфракрасные лучи; 2 -оригинал (непрозрачные элементы изображения зачернены); 3 - термореактивная бумага (чувствительный слой не заштрихован); 4 - термокопия (после химической реакции); 5 - термокопировальная бумага (чувствительный слой не заштрихован); б-термокопировальная бу^ мага после копирования; 7 - термокопия.

Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973. А. Я. Манцен.

ТЕРМОЛЮМИНЕСЦЕНЦИЯ, люминесценция, возникающая при нагревании вещества, предварительно возбуждённого светом или жёстким излучением. Наблюдается у мн. кристаллофосфоров, минералов, нек-рых стёкол и органич. люминофоров. Механизм Т.- рекомбинационный. При нагревании освобождаются электроны, захваченные ловушками, и происходит излучательная рекомбинация их с ионизованными при возбуждении центрами люминесценции. Т. применяется при исследовании энергетич. спектра электронных ловушек в твёрдых телах, а также в минералогии. Центрами люминесценции минералов служат разнообразные структурные дефекты, определяемые условиями образования минералов, а также возникающие при облучении их ионизирующим излучением и при других внешних воздействиях. Спектр Т. минералов и характер высвечивания несут информацию о природе центров свечения, их энергетич. параметрах, возрасте пород, их радиационной и термич. истории. Наиболее интенсивной и сложной Т. обладают минералы, содержащие примеси редкоземельных элементов (флюорит, апатит, ангидрит и др.), а также мн. силикаты (полевой шпат, кварц, содалит и др.), карбонаты, сульфаты.

Лит.: Марфунин А. С., Спектроскопия, люминесценция и радиационные центры в минералах, М., 1975; Thermoluminescence of geological materials, L.- N. Y., 1968 A. H. Таращан.

ТЕРМОМАГНИТНЫЕ СПЛАВЫ, ферромагнитные сплавы, имеющие резко выраженную температурную зависимость намагниченности в заданном магнитном поле. Это свойство проявляется в определённом интервале темп-р вблизи Кюри точек, значения к-рых у Т. с. находятся между 0 и 200 °С. Известны 3 осн. группы Т. с.: медно-никелевые (30-40% Си), железо-никелевые (30% Ni) и железо-никелевые (30-38% Ni), легированные Сг (до 14%), А1 (до 1,5%), Мп (до 2%). Типичные представители этих групп: калъмаллои, термаллои, компенсаторы. .Медно-никелевые сплавы могут применяться в области темп-р от -50 до 80 °С; их недостаток - низкие значения намагниченности. Железо-никелевые сплавы предназначены для работы от 20 до 80 °С; при отрицательных темп-pax в этих сплавах возможно изменение кристаллографической структуры, сопровождающееся повышением точки Кюри и снижением температурного коэфф. намагниченности. Наибольшее распространение получили легированные железо-никелевые сплавы. В зависимости от сост