БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ХРАМОВАЯ МУЗЫКА, культовая музыка.
ЦИНКА СУЛЬФИД, сернистый цинк, ZnS, белый порошок.
ЧЕРСКОГО ХРЕБЕТ, цепи Черского, горная система на С.-В. СССР.
ЧУВАШСКИЙ УНИВЕРСИТЕТ имени И. H. Ульянова.
ТАМОЖНЯ (от тамга), гос. учреждение, контролирующее провоз грузов.
ШТЕТТИНСКИЙ МИР 1570, между Швецией и Данией.
ЭКСПОНОМЕТРИЯ, раздел фотографии, в к-ром определяют условия экспонирования.
ЭССЕ (франц. essai - попытка, проба, очерк, от лат. exagium - взвешивание), прозаич. сочинение.
ТЕАТР ТЕНЕЙ, вид театр, зрелища.
ЕККЕ, текийе, завие (тур. tekke, zaviye), обитель мусульм. дервишей в Турции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2197031823552198549321ную комбинацию атомных орбиталей (ЛКАО МО). В ряде случаев для простейших молекул на основе использования новейшей вычислит, техники могут быть проведены весьма сложные расчёты молекул без всяких предварительных упрощений задачи. На основе указанного метода рассчитываются энергетические и электронные параметры молекул (распределение электронной плотности, величина энергии, длина и порядок связей, нек-рые физ. свойства соединений). Метод МО получил ныне распространение в теории органич. X. В неорганич. X. на основе его сочетания с теорией кристаллического поля (X. Бете) возникла теория поля лигандов.

Квантовохим. рассмотрение кинетич. соотношений, установленных Аррениусом и Вант-Гоффом, привело к возникновению учения об абсолютных скоростях хим. реакций, являющегося основой хим. кинетики. Это позволило вычленить очень важную теоретич. проблему совр. X.-вопрос о природе переходного состояния, промежуточного активированного комплекса, внутри к-рого происходят во многом ещё неясные процессы перестройки структуры молекул.

Детальное изучение кинетики и механизмов реакций, исследование элементарных актов хим. взаимодействий -важная задача хим. физики. Большое значение приобрели работы в области цепных реакции, основы теории к-рых были разработаны Н. Н. Семёновым и С. Хиншелвудом. Кинетические исследования сыграли важную роль в развитии технологии переработки нефти, горения топлива, синтеза высокомолекулярных веществ. Показана возможность хим. фиксации азота при обычных темп-ре и давлении, что может существенно изменить будущую технологию.

Ядерные превращения и сопутствующие им физико-химич. явления, продукты ядерных реакций, радиоактивные изотопы, элементы и вещества служат объектами изучения ядерной химии и радиохимии. Работы в этом направлении имеют большое значение для получения и извлечения атомного сырья, разделения изотопов, использования расщепляющихся материалов.

Взаимодействие вещества с излучением и частицами высоких энергий различной природы, приводящее к хим. превращениям, изучается радиационной X. Воздействие радиации инициирует многие процессы, в т. ч. синтез высокомолекулярных соединений из мономеров. В частности, под действием света происходят фотохимич. реакции. Фотохимия исследует как связывание энергии электромагнитного излучения (напр., в фотосинтезе, осуществляемом зелёными растениями), так и многочисленные реакции синтеза и распада, изомеризации и перегруппировок, возникающие в ходе указанного взаимодействия. Для пром. произ-ва перспективно использование мощной энергии лазера.

В электрохимии накоплен большой материал по исследованию электролитов, их электропроводности, электрохимич. процессов, создана электрохимич. кинетика, изучаются неравновесные электродные потенциалы, процессы коррозии металлов, разрабатываются новые химические источники тока. Успехи теоретич. электрохимии позволили дать более прочную науч. основу мн. пром. электрохимич. процессам.

Влияние магнитных полей на хим. поведение молекул рассматривается магнетохимией. Область термохимич. исследований расширилась в результате изучения взаимодействия вещества с плазмой, в частности в целях использования в плазмохимич. технологии. Становление плазмохимии относится к 60-м гг., когда были выполнены основополагающие работы в СССР, США и ФРГ.

Хим. превращения совершаются во всех агрегатных состояниях вещества-в жидком, газообразном и твёрдом. Всё большую актуальность приобретают исследования хим. реакций твёрдых тел (топохимические реакции).

В совр. X. накапливаются данные о хим. эволюции вещества во Вселенной, что позволяет составить общую картину эволюции природы. Совр. ядерная физика и астрофизика сформировали представление о возникновении хим. элементов. На основе изучения X. метеоритов, вулканич. земных пород, лунного грунта постепенно вырисовывается картина хим. дифференциации вещества на планетной стадии развития, в частности геохим. эволюции (см. Геохимия, Космохимия).

Обнаружение сложных органич. молекул в межзвёздном пространстве, в метеоритах и древнейших горных породах Земли, а также модельные опыты по синтезу сложных органич. веществ из простейших соединений (СН, СО2 NH3, Н2О) в условиях искрового разряда, радиоактивного и ультрафиолетового облучения позволили представить этапы хим. эволюции материи, предшествовавшие возникновению жизни (см. также Происхождение жизни).

Геохимия вулканогенных и осадочных пород, гидрохимия, X. атмосферы, биогеохимия постепенно формируют представления о планетарных миграциях хим. элементов, биохимия - о жизненных циклах. На основе этих данных всё более наполняется конкретным содержанием учение В. И. Вернадского о решающей роли процессов жизнедеятельности для понимания судьбы хим. элементов на нашей планете.

Большие успехи сделала органич. химия. Так, разработаны автоматич. методы синтеза многих белков; установлена структура ряда важных природных веществ -тетродотоксина, гемоглобина, аспартат-аминотрансферазы, содержащей 412 аминокислот, и др.; синтезированы сложнейшие природные соединения - хинин, витамин Bi2 и даже хлорофилл. Огромное влияние оказала органич. химия на развитие молекулярной биологии. Органич. химия легла в основу создания мощной индустрии тяжелого органич. синтеза.

Химия полимеров, к-рая сформировалась в самостоятельную хим. дисциплину лишь в 30-х гг., изучает весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и превращениях, а также о свойствах тел, построенных из макромолекул. Для совр. этапа химии полимеров характерно углублённое изучение механизмов каталитич. полимеризации, вызываемой металлоор-ганич. соединениями, в частности синтеза стереорегулярных полимеров, исследование микроструктуры высокомолекулярных соединений. Установлено, что свойства полимеров зависят не только от хим. состава, строения и размеров макромолекул, но и в неменьшей степени от их взаимного расположения и упаковки (над-молекулярной структуры). Важным достижением явилось создание термостойких полимеров (кремнийорганических, полиимидов и др.). Успехи химии полимеров позволили создать такие важнейшие отрасли хим. пром-сти, как произ-ва пластмасс, синтетич. каучука, хим. волокон, лакокрасочных материалов, иони-тов, клеёв и др.

На всех структурных уровнях организации живого важнейшую роль играют специфические хим. процессы. Непрерывный обмен веществ в организме представляет собой сложнейшую систему согласованных хим. реакций, осуществляемых с участием специфич. белковых катализаторов - ферментов.

Воздействие хим. процессов, происходящих во внеш. среде, на сообщества организмов (биоценозы), хим. миграция элементов внутри экосистем, хим. стимулирование или подавление симбио-тических или конкурентных видов исследуются в рамках хим. экологии. Формирование поведения организмов в сообществах в значит, степени зависит от хим. средств передачи информации (напр., феромонов, используемых животными для привлечения или отпугивания др. особей, регуляции жизнедеятельности в семьях пчёл, муравьев и т. д.).

Традиционные для биохимии нейро-химич. исследования переросли в новую отрасль знаний, изучающую влияния хим. соединений на психич. процессы; формируется т. н. молекулярная психобиология, связывающая молекулярную биологию с наукой о поведении (см. также Психофармакология ).

IV. Современные методы исследования в химии

С сер. 20 в. происходят коренные изменения в методах хим. исследований, в к-рые вовлекается широкий арсенал средств физики и математики. Классич. задачи X.- установление состава и строения веществ - всё успешнее решаются с использованием новейших физ. методов. Неотъемлемой чертой теоретич. и экспериментальной X. стало применение новейшей быстродействующей вычислит, техники для квантовохимич. расчётов, выявления кинетич. закономерностей, обработки спектроскопич, данных, расчёта структуры и свойств сложных молекул.

Из числа чисто хим. методов, разработанных в 20 в., следует отметить микрохимический анализ, позволяющий производить аналитич. операции с количествами веществ, в сотни раз меньшими, чем в методе обычного хим. анализа. Большое значение приобрела хроматография, служащая не только для аналитич. целей, но и для разделения весьма близких по хим. свойствам веществ в лабораторных и пром. масштабах. Важную роль играет физико-химич. анализ (ФХА) как один из методов определения хим. состава и характера взаимодействия компонентов в растворах, расплавах и др. системах. В ФХА широко используются графические методы (диаграммы состояния и диаграммы состав-свойство). Классификация последних позволила уточнить понятие хим. индивида, состав к-рого может быть постоянным и переменным (см. Далътониды и бертоллиды). Предсказанный Курнаковым класс несте-хиометрических соединений приобрёл большое значение в материаловедении и новой области - X. твёрдого тела.

Люминесцентный анализ, метод меченых атомов (см. Изотопные индикаторы), рентгеновский структурный анализ, электронография, полярография и др. физико-химич. методы анализа находят широкое применение в аналитич. X. Использование радиохимич. методик позволяет обнаружить присутствие всего нескольких атомов радиоактивного изотопа (напр., при синтезе трансурановых элементов).

Для установления строения хим. соединений важное значение имеет молекулярная спектроскопия (см. Молекулярные спектры), с помощью к-рой определяются расстояния между атомами, симметрия, наличие функциональных групп и др. характеристики молекулы, а также изучается механизм хим. реакций. Электронная энергетич. структура атомов и молекул, величина эффективных зарядов выясняются посредством эмиссионной и абсорбционной рентгеновской спектроскопии. Геометрия молекул исследуется методами рентгеновского структурного анализа.

Обнаружение взаимодействия между электронами и ядрами атомов (обусловливающего сверхтонкую структуру их спектров), а также между внеш. и внутр. электронами позволило создать такие методы установления строения молекул, как ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадруполъный резонанс (ЯКР), гамма-резонансная спектроскопия (см. Мёссбауэра эффект). Особую роль по широте применения приобрела ЯМР-спектроскопия. Для выяснения пространств. характеристик молекул возрастающее значение приобретают оптич. методы: спектрополяриметрия, круговой дихроизм, дисперсия оптич. вращения. Разрушение молекул в вакууме под влиянием электронного удара с идентификацией осколков применяется для установления их строения методом масс-спектроскопии. Арсенал кинетич. методов пополнился средствами, связанными с использованием ЭПР- и ЯМР-спектроскопии (химическая поляризация ядер), метода импульсного фотолиза и радиолиза. Это позволяет изучать сверхбыстрые процессы, протекающие за время 10-9 сек и меньше.

Для исследования космич. объектов с успехом применяются методы спектрального анализа в различных диапазонах электромагнитного спектра. В частности, методами радиоастрономии в межзвёздном пространстве были обнаружены облака хим. соединений, включающие такие относительно сложные молекулы, как формальдегид, тиомочевину, метиламин, цианацетилен и др. С развитием космич. полётов методы экспериментальной X. стали применяться на внеземных объектах (Луна, Венера, Марс).

V. Химическая технология и тенденции её развития

Потребности общества породили хим. технологию. По выражению Бертло, X. начинает творить свой собственный объект исследования, создавая сотни тысяч неизвестных природе соединении. В развитии хим. технологии исторически первыми были методы упрощения, разложения готовых природных форм: получение металлов из руд, выделение солей из сложных систем, перегонка древесины и др. подобные приёмы. Фундаментом хим. технологии явилось произ-во исходных веществ для мн. более сложных технологий: серной, соляной, азотной кислот, аммиака, щелочей, соды и нек-рых др., составивших область основной хим. пром-сти. Второй крупнейший историч. этап в хим. технологии характеризуется переходом к методам синтеза, получения всё более сложных систем, что базируется уже не только на эмпирич. данных, но и на теоретич. понимании природы, строения и свойств хим. веществ, закономерностей их формирования (см. Синтез химический).

Синтетич. технология в X. эволюционирует от использования готовых природных веществ и материалов через их всё более сложную модификацию к получению новых хим. продуктов, не известных в природе. Так, технология проиэ-ва волокна начиналась с переработки природной целлюлозы, затем перешла к её химически модифицированным формам (вискоза, ацетатный шёлк) и в конечном итоге сделала скачок к синтетич. материалам на принципиально новой основе (полиэфиры, полиамиды, полиак-рилонитрил). При этом отмечается более ускоренное развитие технологии синте-тич. волокна по сравнению с искусственным из природных полимеров.

Важная тенденция развития химической технологии - выход за исторически сложившиеся на нашей планете физико-химич. условия, всё более широкое использование экстремальных условий, необычных факторов: высокие темп-ры, сверхвысокие давления, воздействие плазмы, электрич. и магнитных полей и излучений. Целью технологии становится получение веществ с необычными и весьма ценными свойствами: сверхчистых и сверхтвёрдых, жаростойких и жаропрочных материалов, полупроводников и люминофоров, фотохромов и термохро-мов, катализаторов и ингибиторов, биостимуляторов и медикаментов.

Наблюдается быстрое расширение источников хим. сырья. В производств, сферу вовлекается всё большее число хим. элементов (вплоть до трансурановых), достигается более полная комплексная переработка природных веществ, разрабатываются планы использования таких источников сырья, как Мировой океан. Усиление искусственного хим. воздействия на природные процессы часто приводит к нарушению установившихся природных хим. циклов, к их разрывам и деформациям. Это осложняет т. н. экологическую проблему - задачу сохранения и науч. регулирования среды обитания. Существенным для решения этой задачи является создание замкнутых, безотходных хим. производств, формирование регулируемых хим. циклов в системе природа-общество как важная часть мероприятий по охране природы и окружающей среды.

Усиление роли X. как науки сопровождается интенсивным развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заранее заданными свойствами, новых технологических процессов. Одной из важнейших черт совр. развития производит, сил является химизация народного хозяйства. См. также Химическая промышленность, Научно-технический прогресс, Научно-техническая революция. Материально-техническая база коммунизма.

Научные учреждения и организации, периодические издания. Науч. работа в области химии проводится в ин-тах и лабораториях академий наук, в отраслевых ин-тах, а также в лабораториях ун-тов, технич. вузов, пром. объединений, фирм (см. Наука, Академия наук СССР, Химические институты научно-исследовательские).

Междунар. организацией, осуществляющей связи между науч. хим. центрами различных стран, является Международный союз теоретической и прикладной химии, в к-рый входит Национальный комитет сов. химиков при АН СССР. См. также Химические научные общества и союзы, Химические конгрессы международные.

В СССР химиков объединяет Всесоюзное химическое общество им. Д. И. Менделеева. Общество регулярно проводит съезды по теоретич. и прикладной химии и издаёт свои журналы.

Основные периодические издания, в к-рых публикуются работы по химии, указаны в ст. Химические журналы.

Лит.: Библиография, история и методология химии. Библиография иностранной библиографии по химии, в. 1, М. - Л., 1966; Химия в изданиях Академии наук СССР, т. 1, в. 1 - 2, М. - Л., 1947 - 51; Блох М. А., Хронология важнейших событий в области химии и смежных дисциплин и библиография по истории химии, Л. - М., 1940; Мусабеков Ю. С., Черняк А. Я., Выдающиеся химики мира. Биобибл. указатель, М., 1971; Материалы к библиографии по истории русской науки, сост. Р. П. Гаухман, в. 2, [М.], 1951; Материалы к биобиблиографии ученых СССР. Серия химических наук, в. 1-41 - , М.- Л., 1946 - 76; Меншуткин Н. А., Очерк развития химических воззрений, СПБ, 1888; М е и е р Э., История химии от древнейших времен до настоящих дней, пер. с нем., пре-дисл. Д. И. Менделеева, СПБ, 1899; Л а-денбургА., Лекции по истории развития химии от Лавуазье до нашего времени, пер. [с нем.], с присоединением "Очерка истории химии в России" П. И. Вальдена, Од., 1917; Меншуткин Б. Н., Химия и пути ее развития, М. - Л., 1937; Ф и г у р о в-ский Н. А., Очерк общей истории химии. От древнейших времен до начала XIX в., М., 1969; Д ж у а М., История химии, пер. с итал., М., 1975 (лит.); Очерки по истории химии, [Сб.], М., 1963; Труды Института истории естествознания и техники АН СССР, т. 2, 6, 12, 18, 30, 35, 39, М., 1954-62; Кузнецов В. И., Эволюция представлений об основных законах химии, М., 1967; Соловьев Ю. И., Эволюция основных теоретических проблем химии, М., 1971; Бутлеров А. М., Исторический очерк развития химии в последние 40 лет, Соч., т. 3, М., 1958; Г ь е л ь т Э., История органической химии с древнейших времен до настоящего времени, пер. с нем., Хар. -К., 1937; Шорлеммер К., Возникновение и развитие органической химии, пер. с англ., М., 1937; Главы из истории органической химии. [Сб. ст.], М., 1975; Б ы к о в Г. В., История органической химии, М., 1976; С о л о в ь-е в Ю. И., Очерки по истории физической химии, М., 1964; Капустинский А. Ф., Очерки по истории неорганической и физической химии в России..., М. - Л., 1949; Арбузов А. Е., Краткий очерк развития органической химии в России, М. - Л., 1948; е г о ж е, Избранные работы по истории химии, М., 1975; Советская химия за двадцать пять лет. Сб. ст., М. - Л., 1944; Советская наука и техника за 50 лет. 1917 -1967, в. 1-8, М., 1967 - 68; Советская химическая наука и промышленность. 50 лет. [Сб. ст.], М., 1967; М а н о л о в К., Великие химики, пер. с болг., т. 1 - 2, [М.], 1976; "Журнал Всесоюзного химического общества им. Д. И. Менделеева", 1975, т. 20, № 6 (номер посвящён лауреатам Нобелевской премии по химии); Кузнецов В. И., Диалектика развития химии, М., 1973; Кедров Б. М., Три аспекта атомистики, [т.] 1 - 3, М., 1969; е г о ж е, Энгельс о химии, М., 1971; Философские проблемы современной химии. Сб. переводов, М., 1971; Гносеологические и социальные проблемы развития химии, К., 1974; Жданов Ю. А., Очерки методологии органической химии, М., 1960; Методологические проблемы современной химии, Сб. пер., М., 1967; К о р р Н., Geschichte der Chemie, Bd 1-4, Braunschweig, 1843 - 47; Hoefer FT., Histoire de la chimie, 2 ed., v. 1 - 2, P., 1867 - 69; PartingtonJ.R., A history of chemistry, v. 1 - 4, L. - N. Y., 1961 - 1970; Graebe C., Geschichte der organischen Chemie, Bd 1, В., 1920; W a 1-d e n P., Geschichte der organischen Chemie seit 1880, В., 1941; S z a b a d v a r у Р., Geschichte der analytischen Chemie, Bdpst, 1966; Bu g g e G., Das Buch der grossen Chemiker, Bd 1 - 2, Weinheim, 1955; Great chemists, ed. E. Farber, N. Y. - L., 1961.

Классические работы. Ломоносов М. В., Труды по физике и химии, Поли, собр. соч., т.1 - 2, М. - Л., 1950-51; его ж е, Избр. труды по химии и физике, М., 1961; Дальтон Д ж., Сборник избр. работ по атомистике. 1802-10, пер. с англ., Л., 1940; Бутлеров А. М., Введение к полному изучению органической химии, Соч., т. 2, М., 1953; е г о ж е, Избр. работы по органической химии, [М.], 1951; Столетие теории химического строения. Сб. ст. А. М. Бутлерова, А. Кекуле, А. С. Купера, В. В. Мар-ковникова, М., 1961; Марковников В. В., Избр. труды, М., 1955; М е н-д е л е е в Д. И., Основы химии, Соч., т. 13 -14, Л. - М., 1949; е г о ж е, Периодический закон. [Основные статьи], М., 1958; е г о ж е, Периодический закон. Дополнительные материалы, М., 1960; Г и б б с Д ж., Термодинамические работы, пер. с англ., М. - Л., 1950; Вант-Гофф Я. Г., Очерки по химической динамике, пер. с франц.. Л., 1936; Цвет М. С., Хроматографический адсорбционный анализ, М. - Л., 1946 (сер. "Классики науки"); Б раве О., Избр. научные труды, Л., 1974 (сер. "Классики науки"); Гедройц К. К., Избр. научные труды, М., 1975 (сер. "Классики науки"); Lavoisier A. L., Oeuvres de Lavoisier, t. 1, P., 1864; В e r z e 1 i u s J. J., Larbok i Kemien. bd 1-6, Stockh., 1808-30; его же, Lehrbuch der Chemie, 5 Aufl., Bd 1-5, Lpz., 1847-56; Gerhardt С h. F., Traite de chimie organi-que, t. 1 - 4, P., 1854-60; О s t w a 1 d W., Lehrbuch der allgemeinen Chemie, Bd 1 - 2, Lpz., 1885-87; Ostwald's Klassiker der exak-ten Wissenschaften, № 1 - 244, Lpz., 1889 -1938 (изд. возобновлено в 1954 в ГДР и в 1965 в ФРГ); Alembic club reprints, v. 1 - 28, Edinb., 1893-1912.

Справочные издания. Краткая химическая энциклопедия, гл. ред. И. Л. Кнунянц, т. 1-5, М., 1961 - 67; Справочник химика, под ред. Б. П. Никольского, 2 изд., т. 1 - 6, М. - Л., 1965-68; Лурье Ю. Ю., Справочник по аналитической химии, М., 1962; Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд., К., 1974; Химия. Справочное руководство, пер. с нем., Л., 1975; Неорганическая химия. Энциклопедия школьника, гл. ред. И. П. Алимарин, М., 1975; Г о р д о н А., Ф о р д Р., Спутник химика. Физико-химические свойства, пер. с англ., М., 1976; LandoltH. - Born-stein R., Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6 Aufl., Bd 1 - 4, В., 1966-75-; Gme-lins Handbuch der anorganischen Chemie, 8 Aufl., System № 1 - 73 -, В.- L. [u. a.], 1926 - 74 -; Handbook of chemistry and physics, ed. R. C. Weast, 56 ed., Cleveland (Ohio), 1975; M e 1 1 о r J. W., A comprehensive treatise on inorganic and theoretical chemistry, v. 1 - 16, L.- [a. o.], [1947 - 57]; Nouveau trai-te de chimie minerale, ed. P. Pascal, t. 1 -20, P., 1956 - 64; В e i 1 s t e i n F. K., Handbuch der organischen Chemie, 4 Aufl., Bearb. von B. Prager [u. a.], Bd 1-31, В., 1918-40 (из дополнит, тт.); Traite de chimie organi-que, ed. V. Grignard, t. 1-23, P., 1935-54.

Современные руководства и пособия для высших школ. Некрасов Б. В., Основы общей химии, 3 изд., [т.] 1 - 2, М., 1973; П о-л и н г Л., Общая химия, пер. с англ., М., 1974; КемпбелДж., Современная общая химия, пер. с англ., [т.] 1-3, М., 1975; Г л и н к а Н. Л., Общая химия, 18 изд., Л., 1976; Курс физической химии, под ред. Я. И. Герасимова, 2 изд., т. 1 - 2, М., 1969 -1973; К и р е е в В. А., Курс физической химии, 3 изд., М., 1975; Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1 - 2, М., 1969 - 70; Крешков А. П., Основы аналитической химии, 4 изд., [кн.] 1 - 2, М., 1976.

См. также ст. Химические энциклопедии, лит-ру при ней и при статьях, на к-рые даны ссылки. Ю. А. Жданов, Б. М. Кедров.

"ХИМИЯ", центральное издательство Гос. комитета Сов. Мин. СССР по делам издательств, полиграфии и книжной торговли. Осн. в нач. 1918 при Научно-технич. отделе ВСНХ как Науч. химико-технич. изд-во. Позднее входило в содтав Объединения научно-технич. изд-в, Гос. объединения научно-технич. изд-в. С 1939 Гос. научно-технич. изд-во Наркомхим-прома и Мин-ва химии, пром-сти СССР. С 1964 изд-во "X.". Находится в Москве, имеет отделение в Ленинграде. Выпускает учебную (для высшего и ср. спец. образования), справочную, производст-венно-технич., научную, научно-популя